

Cosmic Black-Hole Growth Tracked by Combining X-ray Surveys and Supercomputer Simulations

Fan Zou and Niel Brandt (Penn State)

Email: fanzou01@gmail.com and wnbrandt@gmail.com

Supermassive black holes grow through accretion and mergers

• Accretion: supermassive black holes can consume gas from their host galaxies.

 Mergers: two supermassive black holes can merge into a single, more massive one.

Image by Nahks TrEhnl (Penn State)

Image by Scott Noble (NASA GSFC)

The accretion power of supermassive black holes captured by X-ray surveys

• X-ray sky survey data accumulated over more than 20 years from three of the most powerful X-ray facilities

Chandra Luo et al. (2017)

XMM-Newton Ni et al. (2021)

eROSITA Brunner et al. (2022)

The merger information from supercomputer cosmological simulations

X-ray and optical observations

Supercomputer simulations

By combining both growth channels, we can track how supermassive black holes grow over cosmic time

 Accretion + mergers (simulations) (X-rays)

 \rightarrow a complete growth picture

Accretion dominated the supermassive black-hole growth in most cases, and mergers made notable secondary contributions

Zou et al. (in prep.)

We predict the overall demography of supermassive black holes over cosmic time

Zou et al. (in prep.)

Summary

- Accretion-driven growth traced with X-ray data accumulated over more than 20 years.
- Merger information from supercomputer TNG cosmological simulations.
- A combination of both returns the most realistic growth picture of supermassive black holes over cosmic time.

Zou et al. (2024); ApJ, 964, 183 Zou et al. (in prep.)

Media inquiries: Fan Zou (fanzou01@gmail.com) Niel Brandt (wnbrandt@gmail.com)