

Magnetic Field in an Unusually Active Star-Forming Region in the Galactic Center

Jianhan (Roy) Zhao, Mark R. Morris, Dylan Paré, Natalie O. Butterfield, and David T. Chuss UCLA, Villanova University, and NRAO

Background: Why Magnetic Fields?

- Thin Radio Filaments in the Galactic Centre (in yellow)
- Multiple hypotheses:
 - Magnetic Field line reconnection
- Originates from Ionized Regions
 - Supply Free Electrons
- Depiction of dynamics:
 - Compression by stellar Winds
 - Clouds' internal Motion

Sgr C: The Rosetta Stone

Sgr C combines them all!
Shell-like Ionized Region
Prominent Filament
Large Molecular Clouds
Massive Star-formation

The Sgr C Filament

- In-cloud field follows the filament
- Compression around the ionized region
- Causes "impact" between two fields
- Supports "reconnection"

359.48° 359.46° 359.44° 359.42° 359.40° 359.48° 359.46° 359.44° 359.42° 359.40° 359.48° 359.46° 359.44° 359.42° 359.40 Galactic Longtitude

Sgr C: Star Formation + Cloud Dynamics

- Massive protostar formation
 present
- The field morphology:
 - Traces clouds' deformation
 - Compressed by ionized region expansion

Summary

- The magnetic field observation in Sgr C:
 - Is the best-suited example to study magnetic field
 - Indirectly support our theory of filament formation
 - Star-formation impacts the magnetic field
- The FIREPLACE Survey:

All FIREPLACE Publication and data on the NASA/IPAC Science Archive

