

Galactic Center Molecular Cloud "Bridge" Reaching Peak X-ray Luminosity after 20 Years of Brightening

Jack Uteg (Michigan State Undergraduate Student)
Prof. Shuo Zhang (Michigan State Professor)
Nathalie Jones (Northwestern Graduate Student)

Molecular Gas in the Galactic Center

Twisted, elliptical ring of cold and dense molecular clouds, 100pc in radius

5-10% of all molecular gas in Milky Way

Bright and variable X-ray features: 6.4keV emission line with continuum to 100keV

B2 OO C1 359.0 E M0.74 C3 C2 M0.74

Reconstructing Sgr A* Outburst History Using X-ray Emissions from Molecular Clouds

Past Sgr A* outburst luminosity can be calculated via iron fluorescence or continuum emission

Iron Fluorescence $L \propto I_{Fe} d^2 \tau_T^{-1}$ Sunyaev & Churazov (1998)

Compton Scattering $L \propto I_{cont} \, d^2 \tau_T^{-1} f(\theta)$ Zhang et. al. (2015)

Observations suggest decrease in luminosity of Sgr A* X-Ray activities in last few hundred years

Bridge Molecular Cloud Reaches Peak X-ray Luminosity

X-Ray Reflection Model Interpretation

Sgr A* outburst ~200 years ago 5 orders of magnitude above quiescence

Luminosity L₈≥1.11*10³⁸ erg/s

Line of sight distance from IXPE polarization (Marin et. al. 2023)

Summary

Uteg, Zhang, & Jones (2024; in prep)

- Galactic Center molecular cloud Bridge at peak brightness around 2021±2 years
- Sgr A* outburst luminosity ~200 years ago reached L₈≥1.11*10³⁸ erg/s, ~5 orders of magnitude higher than current quiescence
- Future monitoring will constrain outburst duration

CONTACT INFORMATION

Jack Uteg (<u>utegjack@msu.edu</u>; 727-366-9985) Prof. Shuo Zhang (<u>zhan2214@msu.edu</u>)