

Ménec Fossae and Thrace Macula on Europa: Hints for Shallow Water Pockets and Identification of the Youngest Terrains

Pietro Matteoni

Planetary Sciences and Remote Sensing, Institute of Geological Sciences, Freie Universität Berlin

pietro.matteoni@fu-berlin.de

Europa – An Ocean World: Overview Past Space Missions

1979 **Voyager missions** (NASA)

1995-2003

Galileo mission → Data we use!
(NASA)

Europa – An Ocean World: Overview Upcoming Space Missions

Launch: 2024 Arrival: 2030

Europa Clipper

(NASA)

Launch: April

2023

Arrival: 2030

JUpiter ICy

moons Explorer

- JUICE (ESA)

Europa – An Ocean World: Overview Interior Structure

Thickness and Structure of Ice Shell is unclear

NASA/JPL

Possible Exchange Processes Emplacement of biosignatures

Hand et al., 2017

If biosignatures are produced within Europa's ocean they will need to reach the surface to be detected by space missions

Introduction and background - Shallow water pockets

- Fractures directly connecting ocean to surface are <u>unlikely</u>
- Shallow water pockets: critical for habitability
 - Have been associated with different surface features

- Material from the ocean or from shallow water pockets can be emplaced on the surface
 - → Through **tectonics cracks**

Ménec Fossae and Thrace Macula – Large scale view

Ménec Fossae - General characteristics

Ménec Fossae displays in a small area **different features** likely related to the **subsurface**

We propose that **Ménec Fossae** has been shaped by **tectonic activity**

Implications for shallow water Ménec Fossae

 Tectonic activity likely associated with a shallow water pocket in the ice shell

Thrace Macula - General characteristics

- Known to be a young terrain
- Known presence of material originating from Europa's interior
 - Prime target to investigate astrobiological potential of Europa
 - → One JUICE and two Europa Clipper fly-overs planned over it

Thrace Macula Libya Linea contact - Reconstruction of geological setting

Tectonic fault at the contact (Fault 1)

Thrace Macula - Identification of the youngest terrains

- Faults formed after Thrace (such as Fault 1)
 - → **Conduits** for fluids
 - Deep material from Thrace can infiltrate along them and emplace on the surface
 - Surface material needs to be young to be astrobiologically relevant – rest is altered by radiations from Jupiter

→ We identified Thrace's youngest material to be encountered and sampled by JUICE and Europa Clipper in this area

- Our findings on Ménec Fossae and Thrace Macula:
 - 1. Suggest the **presence of a shallow water pocket** and have implications for **Europa's ice shell structure** (for **Ménec Fossae**)
 - 2. Lead to identify the youngest and most astrobiologically-relevant terrains in the area (for Thrace Macula)

Scan me to access this paper

...And me for this one