EXOPLANET GALACTIC-ADDRESS DEPENDENECE: The Small Planet Decline

Jon Zink

October 4th, 2023

DPS Press Panel

NASA Hubble Fellow Caltech

www.JonZink.com
@jonKzink

5 billion years ago

Present day

 $\begin{array}{c} \text{ERA OF HEIGHTENED } \alpha \\ \text{ELEMENT ABUNDANCES} \end{array}$

- Type II SN Dominate

Roughly 75% of the Earth's crust is made up of α elements (silicon & oxygen)

Milky Way is Born

lalo Stars Form

Thick Disk Stars

Solar System is Born

Thin Disk Stars Form

Iron is expected to seed giant planet formation (Pollack 1996).

ERA OF HEIGHTENED IRON ABUNDANCES

- Type Ia SN Dominate

PLANETS ARE FORMING AND EVOLVING THROUGHOUT

THIS EVOLUTION

GAIA Astrometry Enables Measurement of the Star's Amplitude

GAIA Astrometry Enables Measurement of the Star's Amplitude

Image Credit: ESA

Zink et al. 2023

Small Planets Are Less Common At High Galactic Oscillation Amplitudes

SUPER-EARTHS

50±8% Reduction within the first kpc.

SUB-NEPTUNES

56±7% Reduction within the first kpc.

14% Reduction expected from [Fe/H]

19% Reduction expected from [Fe/H]

Zink et al. 2023

Small Planets Are Less Common At High Galactic Oscillation Amplitudes

...but why?

System Evolution (Planets Ejected Internally)

Galactic Dynamics (Planets Ejected Externally)

Changes in Disk Composition (Fewer Planets Formed)

Planet Occurrence is Address Dependent

Small Planets Are Less Common At High Galactic Oscillation Amplitudes

Zink et al. 2023

SUPER-EARTHS

50±8% Reduction within the first kpc.

SUB-NEPTUNES

56±7% Reduction within the first kpc.

Contact Info: Jon Zink Email: jzink@Caltech.edu

Web: www.JonZink.com