

Characterization of Tornadoes on the Sun

Oana Vesa¹

Advisor: Juie Shetye¹

¹New Mexico State University

Contact: <u>ovesa@nmsu.edu</u>

Solar Tornadoes are Rotating, Magnetic Structures that Propagate Upwards Throughout the Sun's Atmosphere

- Magnetism vs plasma
- Diameter: small city to planet sized
- Duration: minutes to hours
- Small-scale solar tornadoes:

"Chromospheric Swirls"

Dunn Solar Telescope Imaged 84 Solar Tornadoes

Tracked 33 solar tornadoes up to 1500 km above the Sun's surface

Tornadoes Come in Different Shapes and Sizes

Circular Spiral Complex

• Average Diameters: 2400 miles • Average Lifetimes: 7.8 minutes

Solar Tornadoes Exhibit Complex Dynamics

- 15% show no magnetic footprints
- Appear and disappear
- Twin tornadoes

t = 9 min

t = 10 min

The Evolution and Formation of Solar Tornadoes is Still Largely Unknown

- Relatively new field (2008)
- Increasing sample size of clear examples
- Estimated 11,000 tornadoes
- Potentially trigger Coronal Mass Ejections

Approx. size of Earth -> 🕲

Solar Tornadoes are Complex

- Rotating, magnetic structures
- Propagate upwards throughout the Sun's atmosphere
- 84 potential candidates
- Average diameters: ~2400 miles (3.8 Mm)
- Average lifetimes: 7.8 min
- Exhibit complex dynamics

Contact: <u>ovesa@nmsu.edu</u>