The Structure of the Triangulum Galaxy in Surveyed Stellar Populations

Adam Smercina
University of Washington asmerci@uw.edu +1 8107724392

With: Julianne Dalcanton
(Center for Computational Astrophysics), Ben Williams (U. of Washington), and the PHATTER Team

Galaxies Come in all Shapes \& Sizes

Spiral Structure in Low-mass Galaxies is Poorly Understood

Nearest examples are... a mess

Interaction with Milky Way is the dominant process!

Messier 33: A More Well-Behaved Example

- Andromeda(M31)'s largest satellite
- Discovered centuries ago (1654 earliest documentation)!
- Visually a prototypical "flocculent" spiral
- Used the resolving power of Hubble to study individual stars in M33, revealing its structure in never-before-seen detail.

The Panchromatic Hubble

 Andromeda Treasury Triangulum Extended Region (PHATTER)108 orbits of HST in 54 individual pointings.
(PI: Dalcanton)
22 million individually resolved stars in M33's center.

We Can Select Broad Populations of Stars Using the "Color-Magnitude Diagram"

M33's Structure is

- Very Young stars show typical flocculent structure
- Young stars look similar, but with 2 dominant arms and a bar? oM33 not considered a "barred galaxy"
- Old and Intermediate-age stars organized in much smoother disk with only 2 spiral arms + a bar

Summary

1. Using HST, the PHATTER Survey has resolved 22 million stars in M33 revealing its structure in never-before-seen detail.
2. M33's structure shows large differences in its young vs. ancient populations
3. Primary structure is a 2 -arm spiral with a bar, rather than the flocculent structure it's known for

- Flocculent structure is only visible in youngest stars

4. Hidden structure such as this may be relevant for many low-mass spiral and irregular galaxies.
