RADAS

The Next Generation Planetary Radar on the Green Bank Telescope

Patrick A. Taylor

National Radio Astronomy Observatory (NRAO) Green Bank Observatory (GBO) ptaylor@nrao.edu

The Role of the GBT in Planetary Radar

20+ years as a radar receiver

- Two of the first science observations by GBT were radar of Venus and a near-Earth asteroid
- Recently used to confirm the NASA DART kinetic impactor technology demonstration

• Why transmit from GBT?

- Large 100-m aperture (antenna gain)
- Surface accuracy
- Higher frequency
- Maneuverability

The Next Generation Planetary Radar on GBT

ptaylor@nrao.edu

Pilot Observations

- Transmitter built by Raytheon
- Transmit from NSF's GBT
- Receive with NSF's VLBA
- Low output Power: < 700 W
- Finest Resolution Possible: ~ | meter
- Observations completed in 2020/2021
 - Moon, space debris, NEO
- Left: "Spotlight" radar images of Apollo 15 landing-site region

Image Credit: Raytheon

Apollo 15 Landing Site

RADA9

Resolution: ~1.25 meters

Highest resolution image of the Moon taken from Earth

Image Credit: Raytheon

Tycho crater: ~85 km diameter

Resolution: ~5 meters

Tycho crater: ~85 km

Resolution: ~5 meters

Image Credit: Raytheon

"Potentially Hazardous" Asteroid

- No impact threat to Earth
- Flew by Earth at >2 million km
- (231937) 2001 FO32

Transmitter: 600W at Green Bank Observatory Receiver: St. Croix VLBA March 21st, 2021 1130-1200 UTC Waveform: 13.9 GHz continuous tone Processing: 1073.74 sec coherent integration 4096 point (3.8 Hz) sliding Doppler Window

Detected at more than **5 times** further away than the Moon **with less power than a microwave oven!**

231937 (2001 FO32)

Next Generation Planetary Radar with the GBT

ptaylor@nrao.edu

A Next Generation Planetary Radar on the GBT

- <u>Goal</u>: High-power radar (500 kW at 13.7 GHz) for planetary science, planetary defense, and space situational awareness
- Demonstrated compelling radar results:
 - Meter-scale imaging of the Moon (and closer)
 - Geology and dynamics
 - Detecting, tracking, and characterizing space debris in cislunar space
 - Safety and security
 - Detecting, tracking, and characterizing NEOs for planetary defense
 - Impact hazard assessment and mitigation planning
 - Studying solid bodies across the Solar System for planetary science
 - Physical and dynamical characterization

Next Generation Planetary Radar with the GBT

ptaylor@nrao.edu

ce E

RADAS

The Next Generation Planetary Radar on the Green Bank Telescope

- Science ngRADAR website:
 - ngradar.nrao.edu
- Public ngRADAR website:
 - public.nrao.edu/next-generation-radar

iPoster: Taylor et al. #104.11 Email: ptaylor@nrao.edu

Patrick A. Taylor

National Radio Astronomy Observatory (NRAO) Green Bank Observatory (GBO) ptaylor@nrao.edu

GREEN BANK OBSERVATORY

₩ Raytheon ▼ Intelligence & Space