Detection of Seven High-Energy X-ray Flares from the Galactic Center Supermassive Black Hole Sgr A*

Rose Ziyu Xu (Math Senior, Bard College)

Email: <u>rx3908@bard.edu</u>

Shuo Zhang (Assistant Professor of Physics, Bard College)

Email: szhang@bard.edu

<u>In collaboration with:</u> Daryl Haggard (McGill), Sera Markoff (U. of Amsterdam), Joey Neilsen (Villanova), Michael Nowak (WUSTL), Gabriel Ponti (INAF) and Giovanni Stel (INAF)

Supermassive Black Hole Sagittarius A* (Sgr A*)

- Located at the dynamical center of the Milky Way Galaxy
- Closest supermassive black hole with 4 million times the mass of Sun
- One of the most inactive supermassive black holes known

IR: NASA/STScI

Mysterious Sgr A* X-ray Flares

Chandra Sgr A* light curve on Oct 20, 2014.

NuSTAR Sgr A* Observation Campaign from 2012-2022

Year	Instruments	NuSTAR Exposure
2012	NuSTAR + Chandra/Keck	335 ks
2013	NuSTAR	367 ks
2014	NuSTAR + Chandra/Spitzer/XMM	227 ks
2015	NuSTAR + XMM	92 ks
2016	NuSTAR	151 ks
2017	NuSTAR + EHT/Chandra	196 ks
2018	NuSTAR + EHT/Chandra	81 ks
2019	NuSTAR + Gravity/Chandra/XMM	466 ks
2 <mark>020</mark>	NuSTAR + Gravity/EHT	72 ks
2021	NuSTAR + EHT	276 ks
2022	NuSTAR + EHT	157ks
Total	2.3 Ms	

Chandra image credit: NASA

EHT image credit: ESO/M. Kornmesser

_{1.8} Flare 1 (8-20-2019)1.2 8.0 0.6 1:00 3:00 5:00 7:00 8:00 6:00 **UTC time (8-20-2019)** Flare 2 (4-19-2022)0.5 13:00 14:00 15:00 16:00 17:00 UTC time (4-19-2022)

Seven New Sgr A* Flares Detected during 2016-2022

Do Bright Flares and Faint Flares Share the Same Origin?

- Investigated flare spectra dependence on their brightness
- Found a trend that brighter flares have harder spectra at 2σ confidence level
- It suggests that bright and faint flares might have different origins, but it calls for more flare samples to confirm or reject this trend.

Black: 7 hard X-ray Sgr A* flares during 2012-2015 (Zhang et al. 2017)

Red: 7 newly detected hard X-ray Sgr A* flares during 2016-2022 (this work)

Summary

- Detected 7 bright high-energy X-ray Sgr A* flares using NuSTAR X-ray observations from 2016 to 2022, totaling 1.3 Ms exposure time.
- Doubled previously known bright Sgr A* high-energy X-ray flares.
- Found a trend that bright flares have harder spectra compared to fainter flares, which needs more data to confirm.

Contact:

Shuo Zhang, Bard College, szhang@bard.edu, 845-758-7059 Rose Ziyu Xu, Bard College, rx3908@bard.edu