A Large Number of Candidate Galaxies at Redshifts of 11 — 20 as Revealed by JWST ERO Data in SMACS 0723-73

Haojing Yan¹, Zhiyuan Ma², Chenxiaoji Ling¹,
Cheng Cheng³, Jia-Sheng Huang³
(1)University of Missouri-Columbia; (2)University of Massachusetts
Amherst; (3)National Astronomical Observatories of China

241st AAS Meeting, Seattle, WA January 9, 2023

First Set of JWST Deep Data Revealed a Large Number of Candidate Galaxies at 200-400 Million Years after the Big Bang

Haojing Yan¹, Zhiyuan Ma², Chenxiaoji Ling¹,
Cheng Cheng³, Jia-Sheng Huang³
(1)University of Missouri-Columbia; (2)University of Massachusetts
Amherst; (3)National Astronomical Observatories of China

241st AAS Meeting, Seattle, WA January 9, 2023

Redshift ("z"), Distance, Age of the Universe

 Expanding universe: galaxies beyond our Milky Way are moving away from us; the further they are, the larger their receding speeds are

large receding speed = large distance

 Light-emitting source moving away from observer — its light is "redshifted" (its blue light appears red to observer)

large receding speed = high redshift (high-z)

- \Rightarrow High z =large distance
- Speed of light is finite

large distance = long light-traveling time

 \Rightarrow High z = long light-traveling time = young universe

High-redshift signature: Lyman break

* Absorption due to the line-of-sight neutral hydrogen clouds creates strong "Lyman-break" signature in spectra of objects at z > 3 (Steidel & Hamilton 1992)

Absorption due to hydrogen clouds

Spectrum of a z=3.6 quasar revealing the line-of-sight Ly α absorption

Finding High-z Galaxies: "dropout" selection

- A high-z galaxy is weak or even invisible in ("drops out") blue-band imaging; but still appears in red bands
- * z > 11 is beyond the reach of the HST; JWST for the job!

JWST pushing to z >11

- ❖ So it's all natural then to see JWST pushing beyond z~11?
- * Yes: everyone expected JWST to find galaxies at z>11
- No: almost no one expected to see so many candidate galaxies at z ~ 11-15 (let alone at approaching z ~ 20 and beyond) within just one NIRCam pointing
- Next: What we found are still just "candidate galaxies" at z > 11; JWST spectroscopy confirmation on such objects will be critical
- ♣ Bottom line: even if just a fraction of our candidates are confirmed at z > 11~15, our previous picture of galaxy formation in the early universe must be revised

Based on "First Batch of z ≈ 11- 20 Candidate Galaxies Revealed by the JWST Early Release Observations on SMACS 0723-73" by Yan, Ma, Ling, Cheng & Huang (2023), ApJ, 942, L9 (preprint posted at arXiv.org on 07/23/2022)

See also iPoster 177.41