Far-Infrared Polarization and Dust Properties of Cas A using SOFIA HAWC+

Jeonghee Rho SETI Institute, California

Collaborators Aravind Ravi¹, Ilse De Looze², Jeremy Chastenet², Le Ngoc Tram³, Thiem Hoang⁴, Matthew Millard¹, Florian Kirchschlager⁵, Mike Barlow⁵, Haley Gomez⁶, Loretta Dunne⁶, Sangwook Park¹

- 1. University of Texas, Arlington, USA
- 2. Ghent University of , Belgium
- 3. Max Planck Institute for Radio Astronomy, Germany
- 4. Korean Astronomy and Space Science Institute, South Korea
- 5. University College London, UK
- 6. Cardiff University, UK

Mystery of Dust in the early Universe

Cosmic Dust Rocks

- After Big Bang, the first stars are born and die as supernovae.
- A huge amount of dust is observed in high red-shifted galaxies
- The early Universe was too young for the well-known dust source of the evolved stars to exist. Where does the dust come from?

Cas A: Dust forms in Ejecta

Did dust grains form in the SN ejecta? pre-SN dust or ISM swept up dust

Dust (including Silica)

Ejecta (Ar)

Why Polarization?

letters to nature

No cold dust within the supernova remnant Cassiopeia A 350 yr old

Oliver Krause^{1,2}, Stephan M. Birkmann², George H. Rieke¹, Dietrich Lemke², Ulrich Klaas², Dean C. Hines³ & Karl D. Gordon¹

¹Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, Arizona 85721, USA

²Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
³Space Science Institute, 4750 Walnut Street, Boulder, Colorado 80301, USA

A large amount (about three solar masses) of cold (18 K) dust in the prototypical type II supernova remnant Cassiopeia A was recently reported¹. It was concluded that dust production in type II supernovae can explain how the large quantities ($\sim 10^8$ solar masses) of dust observed² in the most distant supers

2.5 m telescope

SOFIA HAWC+ (High-Resolution Airborne Wideband Camera Plus) Polarization observation

- How does the magnetic field flow?
- What type of dust grains are present?
- How large ar
- What shapes
- How does th
- Are supernov

Mosaicked Image of SOFIA (154 microns in red), Heschel (70 in green) and Spitzer (24 in blue) Magnetic field flow on the SOFIA HAWC+ map

Polarization and Dust Properties

- We discover high percent polarization in Cas A (5 – 30%): one of the highest sources.
- Large grains (> 0.14 microns) are formed in SNe.
- Silicate dust grains are dominant grains (over carbon dust)

 Sufficiently large amounts of dust (> 0.2 solar mass) from the polarized regions of the SNR: Supernovae are the significant dust producer in the early Universe.

SOFIA HAWC+ observations at 154 micron (far-IR polarization)

High percent polarization (5-30%) was detected.

The lines show the magnetic field direction. The color map is 154 microns image.

Cas A: Dust forms in Ejecta

Did dust grains form in the SN ejecta? pre-SN dust or ISM swept up dust

Dust (including Silica)

Ejecta (Ar)

ORIGIN OF DUST

The supernova remnant Cas A

