Spontaneous Reheating during Crystallization of Stardust: Resolution of an Interstellar Medium Paradox

Angela Speck¹, Alan Whittington¹, Alexander Sehlke² ¹ University of Texas and San Antonio ² NASA Ames Research Center

UTSA. The University of Texas at San Antonio Department of Physics and Astronomy

Dust in space is everywhere

Star death

In other galaxies

Crystal structure matter

Graphite

Amorphous Carbon

Crystalline vs. amorphous dust

Single Crystal (ordered, anisotropic)

Glassy Grain (disordered, isotropic) Polycrystalline

monomineralic

polymineralic including glass

Results:

As molten rock cools it nucleates crystals The formation of the crystals releases heat The crystals glow brightly compared to the surround liquid

Experimental Results

- We studied the heating and cooling of mineral samples
- Fe_{0.4}Mg_{0.6}SiO₃ is a similar to silicate space dust
- On cooling, the material spontaneously heats up!

Energy release from crystallization

- At ~1000 K curve goes -ve
- Sample is generating heat from crystallization
- →Shines brighter than surrounding
- **Brightness is proportional to T⁴**
- Small change in T \rightarrow big change in brightness
- For space dust grains at ~1000K may be able to crystallize
- →heat up
- →Shine more brightly than surrounding amorphous dust

Implications/Summary

As dust forms it can crystallize

055

- The dust heats → Brightens → easier to see
- Once it cools, crystalline features will be hidden.
- Dust forming around stars will show crystalline dust,
- Cool dust in the ISM will not.
- Solve the paradox
- Whether dust in crystalline or amorphous affects EVERYTHINGI