

The Astronomical Event Observatory Network

Multi-messenger and Time-domain Astronomy

Dr. Lisa Storrie-Lombardi

Partnership to create an extended network of follow-up observing facilities

- A. Adamson, J.P. Blakeslee, B.W. Miller Gemini Observatory/NSF's NOIRLab
- R.D. Blum, Vera C. Rubin Observatory/NSF's NOIRLab
- A.S. Bolton, C-H. Lee, S. Ridgway, Community Science and Data Center/NSF's NOIRLab
- T. Boroson, M. Bowman, E. Gomez, E. Heinrich-Josties, A. Hopkinson, J. Nation, R. Street, Las Cumbres Obs.
- C. Briceno, J. Elias, SOAR Telescope/NSF's NOIRLab
- S. Heathcote, Cerro Tololo Inter-American Observatory/NSF's NOIRLab
- D.R. Silva, The University of Texas at San Antonio

LCO global telescope network

twenty-three telescopes

seven sites around the world

working together as a single instrument

Las Cumbres Observatory is unique

global telescope network

robotic operations

dynamic queue observation scheduling

rapid delivery of processed data

US Community access to LCO facilities provided through support from the National Science Foundation

Robotic Operations

internet

weather stations

status database

software brain to run it

Dynamic Scheduling • Rapid Data Delivery

entire network reschedule every 5 minutes

support multiple timing constraints

submit observations programmatically

data available within minutes of shutter close

Example: kilonova AT 2017gfo

Only one gravitational wave event, GW170817, has had a detected electromagnetic counterpart, resulting in the discovery of the first kilonova, AT 2017gfo.

KILONOVA The galaxy NGC 4993

Abbott et al., 2017

kilonova AT 2017gfo

LCO observations were key for constraining the peak of the light curve to be a few hours after the merger.

Arcavi et al., 2017

DAYS (since merger)

Facilitate efficient access to the follow-up resources that astronomers need for their science.

Astronomy Discovery Engines

Astronomical surveys are producing greater data volumes and many issue alerts in near-real time

Telescope Allocations in Astronomy

Normally allocated in 6 month semesters by competitive proposal

Block scheduling of contiguous nights is common

Characterization observations are required to achieve the science with major surveys

- almost all scientific use-cases require follow-up with a range of facilities
- imaging and spectroscopy
- alert follow-up can be disruptive to telescope schedules

Observing Use Cases

single-shot

time constrained repeated monitoring

rapid response

Infrastructure Requirements

Software-enabled dynamic queue scheduling

Programmably accessible telescopes

Dynamic Queue Scheduling

Queue: Interleave observations from different programs

Dynamic: schedule regenerated at regular intervals to allow for changes in conditions and/or observing requests

Programmably accessible telescopes

Online interface or client that allows users to specify their own observation requests

Provides traceability

Enables monitoring by user/observatory staff

APIs* enable requests submitted by software, such as Target and Observation Manager systems

Public TOM Toolkit package available: https://tom-toolkit.readthedocs.io/en/stable/

^{*}API = application programmable interface - software intermediary allowing two packages to communicate with each other

SOAR 4m Telescope

Interface via existing programmatic portal when they choose

Available as a queue-scheduled node on LCO network when in AEON-mode

Traditionally scheduled the rest of the time - SOAR controls the schedule

Human operators on-site

Programmatic submission of observations provided by LCO portal

Automatic TOM compatibility provided through LCO portal

Operating in AEON mode since August 2019

Gemini 8-meter Telescopes

Facility's own scheduling system with compatible interface

- Queue-scheduled observations
- Programmatic submission of observations with an existing API
- Gemini observing TOM Toolkit available module plugin (built by Bryan Miller, Gemini)
- Ongoing re-design of operations software designed with AEON and new automated scheduling system

Full-featured observatory control system

Provide a community-ready OCS that can be adapted for new and existing observatories around the world.

- Fully open source
- Well-documented
- Provide community support

Future Development

AEON's request language is designed to extend to new instruments

A diverse network, spanning all longitudes, latitudes, and wavelength regimes will enable science

New AEON partners are welcome

Lisa Storrie-Lombardi lisa@lco.global

thank you

