ONE IN A HUNDRED MILLION

New Developments in Direct Contrast Ratio Imaging with a Charge-Injection Device

Sailee Sawant Ph.D. Advisor: Dr. Daniel Batcheldor

Department of Aerospace, Physics and Space Sciences Florida Institute of Technology

> 237th AAS Meeting Press Conference Email: ssawant2011@my.fit.edu Phone: +1 321-960-5268

January 15, 2021

Sailee Sawant

Direct CR Imaging with a CID

イロト イヨト イヨト イヨ

Candle Next to the Lighthouse: Faint Target vs. Bright Source

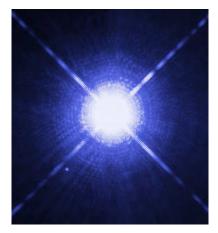
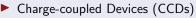



Figure 1: Sirius A (center) and its faint stellar companion, Sirius B (lower left). This $0.24' \times 0.26'$ image was taken on October 15, 2003 with Hubble's Wide Field Planetary Camera 2 [Bond et al., 2017]

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Current Imaging Instrumentation

Complementary metal-oxide-semiconductor (CMOS) devices

Disadvantages:

- Limited full well capacity
- Charge saturation
- Limited dynamic range

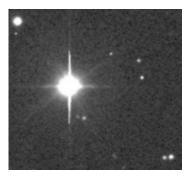


Figure 2: Charge saturation and blooming on a CCD image [Chromey, 2010]

< □ > < 同 >

 \Rightarrow Directly achievable contrast ratios: $\log_{10}(CR) < 5$

Objective: To suppress signals from bright sources **Method:** Point-spread function (PSF) subtraction

- Coronography [Schneider et al., 2010]
- Ground-based Angular Differential Imaging [Marois et al., 2006]
- Spaced-based Roll Subtraction Imaging [Lowrance et al., 2005, Schneider et al., 2010]
- Nulling Interferometry [Bracewell and MacPhie, 1979, Linfield, 2003]
- \Rightarrow Achievable contrast ratios: $5 < \log_{10}(CR) < 7$

Operational Requirements:

- Similar target and template PSFs
- High wavefront quality
- Stable pointing and tracking controls
- Additional optical elements

\Rightarrow complex, expensive, and time-consuming

イロト イヨト イヨト イヨ

How do we conduct observations for contrasts that are many more orders of magnitudes higher and for targets that are at even smaller angular separations?

Potential Solution:

Use charge-injection devices (CIDs) for direct extreme contrast ratio (ECR) imaging

Benefits:

- Simple
- Cost-Effective
- Practical

• • • • • • • • • • • •

Charge-Injection Devices (CIDs)

Some major advantages [Bhaskaran et al., 2008]:

- Adaptive dynamic range \Rightarrow Theoretical $\log_{10}(CR) \sim 9.6$, or $\Delta m \sim 24$
- Inherently anti-blooming
- Randomly addressable pixels
- Non-destructive readout (NDRO) capability

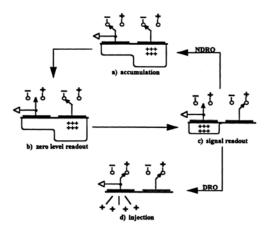


Figure 3: Basic CID readout operation [Ninkov et al., 1994]: (a) charge accumulation, (b) zero level readout, (c) Signal readout, (d) charge injection

• • • • • • • • • • • •

Preliminary Study: Sirius Field Observations

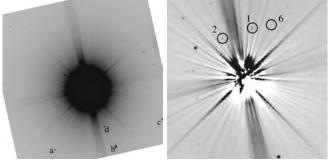
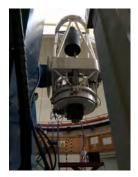


Figure 4: The (left) 13' and (right) 3'.25 radius fields around Sirius [Batcheldor et al.,2016].Object m_v (mag) Raw log(CR)

- Detector: SpectraCAM XDR (SXDR)
- Telescope: Florida Tech 0.8 m Ortega, Florida
- Filter: V-Band
- Exposure Time: 20 seconds

m_v (mag)	Raw log(<i>CR</i>)				
-1.46					
14.2	6.3				
14.5	6.4				
16.8	7.3				
	-1.46 14.2 14.5				

 Table 1: V-Band magnitudes


[Bonnet-Bidaud and Gry, 1991]

Next Step: Sirius Field Observations from La Palma

- Telescope: Jacobus Kapteyn Telescope (JKT)
- Observation Site: Roque de los Muchachos, La Palma, Canary Isles
- Aperture Size: 1.0 m

Sirius Field

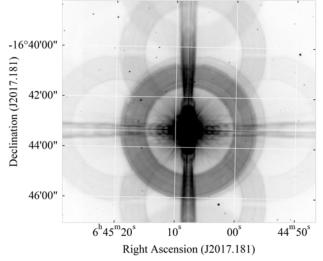
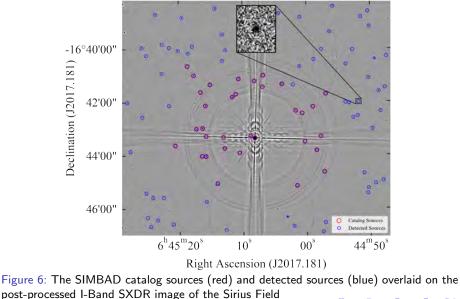



Figure 5: Pre-processed I-Band SXDR image of the Sirius Field with an exposure time of 180 seconds. The signal from Sirius is not saturated.

Results: 1 Part in 100 Million

Results: 1 Part in 100 Million (cont.)

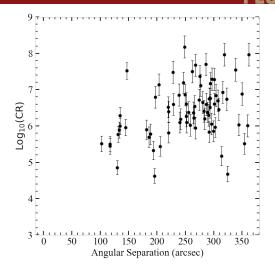


Figure 7: $log_{10}(CR)$ as a function of angular separation in arcseconds for the I-Band SXDR image of the Sirius Field

Image: A math a math

Results: Sirius A and Sirius B

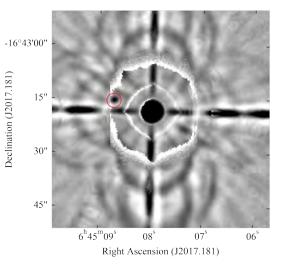


Figure 8: Sirius A (center), and its faint stellar companion, Sirius B (marked in red)

• • • • • • • • • • •

FCH

CID Performance in Low Earth Orbit

Figure 9: CID camera mounted to the Kibo Exposed Facility on-board the *International Space Station (ISS)*

 \Rightarrow No significant on-orbit changes in terms of dark current, linearity, read noise, and photon transfer efficiency

 \Rightarrow CIDs are now space-qualified to Technology Readiness Level 8 (TRL-8) and can be considered for future space telescopes

- Acquired unsaturated SXDR images of the Sirius field with an exposure time of 180 seconds.
- Detected and resolved previously uncatalogued sources, along with Sirius B, without imposing complex operational requirements.
- Demonstrated a direct achievable contrast ratio of 1:100 million with a 1.0 m telescope
- Delivered a simple, cost-effective, yet powerful technique that combines CID imaging and software-based image analysis
- ► Next step is to carry out CID imaging from an observing site with ~ 2.5 m telescope (For example, 2.54 m Issac Newton Telescope, La Palma)
 - To detect even fainter sources
 - To achieve even higher contrast ratios

Contact Info: Email: ssawant2011@my.fit.edu Phone: +1 321-960-5268

イロト イヨト イヨト イヨ

References

- D. Batcheldor, R. Foadi, C. Bahr, J. Jenne, Z. Ninkov, S. Bhaskaran, and T. Chapman. Extreme contrast ratio imaging of sirius with a charge injection device. *Publications of the Astronomical Society of the Pacific*, 128(960):025001, jan 2016. doi: 10.1088/1538-3873/128/960/025001.
- D. Batcheldor, S. Sawant, J. Jenne, Z. Ninkov, S. Durrance, S. Bhaskaran, and T. Chapman. Charge Injection Device Performance in Low-Earth Orbit., 132(1011):055001, May 2020. doi: 10.1088/1538-3873/ab7a74.
- Suraj Bhaskaran, Tony Chapman, Michael Pilon, and S Vangorden. Performance based cid imaging-past, present and future. Proceedings of SPIE - The International Society for Optical Engineering, 7055, 08 2008. doi: 10.1117/12.795235.
- Howard E. Bond, Gail H. Schaefer, Ronald L. Gilliland, Jay B. Holberg, Brian D. Mason, Irving W. Lindenblad, Miranda Seitz-McLeese, W. David Arnett, Pierre Demarque, Federico Spada, Patrick A. Young, Martin A. Barstow, Matthew R. Burleigh, and Donald Gudehus. The Sirius System and Its Astrophysical Puzzles: Hubble Space Telescope and Ground-based Astrometry. , 840(2):70, May 2017. doi: 10.3847/1538-4357/aa6af8.
- J. M. Bonnet-Bidaud and C. Gry. The stellar field in the vicinity of Sirius and the color enigma. , 252:193, Dec 1991.
- R. N. Bracewell and R. H. MacPhie. Searching for nonsolar planets. , 38(1):136–147, Apr 1979. doi: 10.1016/0019-1035(79)90093-9.
- Frederick R. Chromey. To Measure the Sky: An Introduction to Observational Astronomy. Cambridge University Press, 2010. doi: 10.1017/CBO9780511794810.

イロト イヨト イヨト イヨト

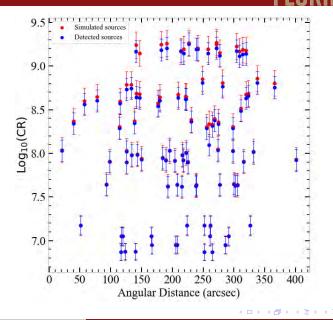
References (cont.)

- Roger P. Linfield. Technology requirements and development path for planet detection by mid-IR interferometry. In Michael Shao, editor, *Interferometry in Space*, volume 4852, pages 443 450. International Society for Optics and Photonics, SPIE, 2003. doi: 10.1117/12.460862. URL https://doi.org/10.1117/12.460862.
- Patrick J. Lowrance, E. E. Becklin, Glenn Schneider, J. Davy Kirkpatrick, Alycia J. Weinberger, B. Zuckerman, Christophe Dumas, Jean-Luc Beuzit, Phil Plait, Eliot Malumuth, Sally Heap, Richard J. Terrile, and Dean C. Hines. An Infrared Coronagraphic Survey for Substellar Companions. , 130(4): 1845–1861, Oct 2005. doi: 10.1086/432839.
- Christian Marois, David Lafrenière, René Doyon, Bruce Macintosh, and Daniel Nadeau. Angular Differential Imaging: A Powerful High-Contrast Imaging Technique., 641(1):556–564, Apr 2006. doi: 10.1086/500401.
- Zoran Ninkov, Chen Tang, Brian S. Backer, Roger L. Easton, and Joseph M. Carbone. Charge injection devices for use in astronomy. In *Astronomical Telescopes and Instrumentation*, 1994.
- Glenn Schneider, Murray D. Silverstone, Elizabeth Stobie, Joseph H. Rhee, and Dean C. Hines. NICMOS Coronagraphy: Recalibration and the NICMOS Legacy Archive PSF Library. In *Hubble after SM4*. *Preparing JWST*, page 15, Jul 2010.

イロト イポト イヨト イヨー

	CCD	CID
Detector Name	Andor Ikon-L 936	SpectraCam XDR (SXDR)
Туре	Back-Illuminated	Front-Illuminated
Operational Temperature	-99.0°C	-45.6°C
Physical Area (pixels \times pixels)	2048 × 2048	2048 × 2048
Pixel Size (microns)	13.5 imes 13.5	12.0×12.0
Pixel Scale	0.34"/pixel	0.30"/pixel.
Field of View	11'.6 imes 11'.6	10'.0 imes 10'.0
Gain (e [_] /ADU)	1.0	6.2
QE (at 525 nm (\sim V-band))	95%	48%
Full Well Capacity	100,000 e ⁻	Linear (within 2%) \rightarrow 268,000 e^- , Saturation \rightarrow 305,000 e^-
Read Noise	6.3 e ⁻	Single Read: 44 e ⁻ RMS, 128 NDROs: 5.8 e ⁻ RMS

メロト メポト メヨト メヨト


Bright Stars:

Proper	Bayer	Henry Draper (HD)	RA	DEC	Spectral	v	B - V	V - R	R - I	V - I	Parallax
Name	Designation	Catalogue Name	(hh mm ss)	(dd mm ss)	Туре	(mag)	(mag)	(mag)	(mag)	(mag)	(mas)
			(J2000.0)	(J2000.0)							
Aldebaran	* alf Tau	HD 29139	04 35 55.24	+16 30 33.49	K5	0.860	1.540	1.230	0.940	2.170	48.94
Alpheratz	* alf And	HD 358	00 08 23.26	+29 05 25.55	B8	2.060	-0.110	-0.030	-0.100	-0.130	33.62
Altair	* alf Aql	HD 187642	19 50 47.00	+08 52 05.96	A7	0.760	0.220	0.140	0.130	0.270	194.95
Arcturus	* alf Boo	HD 124897	14 15 39.67	+19 10 56.67	K1	-0.050	1.230	0.980	0.650	1.630	88.83
Betelgeuse	* alf Ori	HD 39801	05 55 10.31	+07 24 25.43	M1	0.420	1.850	1.590	1.280	2.870	6.55
Castor	* alf Gem	HD 60179	07 34 35.87	+31 53 17.82	A1	1.580	0.040	0.070	-0.010	0.060	64.12
Deneb	* alf Cyg	HD 197345	20 41 25.92	+45 16 49.22	A2	1.250	0.090	0.110	0.100	0.210	2.31
Pollux	* bet Gem	HD 62509	07 45 18.95	+28 01 34.32	K0	1.140	1.000	0.750	0.500	1.250	96.54
Procyon	* alf CMi	HD 61421	07 39 18.12	+05 13 29.96	F5	0.370	0.420	0.420	0.230	0.650	284.56
Scheat	* bet Peg	HD 217906	23 03 46.46	+28 04 58.03	M2	2.420	1.670	1.500	1.320	2.820	16.64
Sirius	* alf CMa	HD 48915	06 45 08.92	-16 42 58.02	A1	-1.460	0.000	0.000	-0.030	-0.030	379.21
Spica	* alf Vir	HD 116658	13 25 11.58	-11 09 40.75	B1	0.970	-0.230	-0.090	-0.240	-0.330	13.06
Vega	* alf Lyr	HD 172167	18 36 56.34	+38 47 01.28	A0	0.030	0.000	-0.040	-0.030	-0.070	130.23

・ロト ・回ト ・ヨト

F.C.H

Simulated Star Field

