Search for Candidate Exogenous Material on Bennu using MapCam and PolyCam Images

Humberto Campins
Physics Department & Center for Lunar and Asteroid Surface Science
University of Central Florida
E. Tatsumi, M. Popescu, J. L. Rizos, A. A. Simon, H. H. Kaplan, D. N. DellaGiustina, J. de León, J. Licandro, D. S. Lauretta.
Outline

I. Exogenous Material on Bennu & Ryugu (Della Giustina et al. 2020; Tatsumi et al. 2020)

II. New Candidate Exogenous Material on Bennu
 ▪ 44 new boulders identified with red slope and x-band (0.85 µm) absorptions in MapCam colors

III. Conclusions
I. Exogenous Material on Bennu

- Exogenous material reported on asteroids (101955) Bennu and (162173) Ryugu (DellaGiustina et al. 2020; Tatsumi et al. 2020)
- Albedo, color, and spectra of six bright boulders are distinct from the rest of Bennu’s surface and are likely basaltic material from asteroid (4) Vesta (DellaGiustina et al. 2020)
- Bright boulders identified on asteroid Ryugu show absorptions near 1 µm but not near 2 µm, suggesting olivine-rich anhydrous silicates (Tatsumi et al. 2020)
I. Exogenous Boulders on Bennu (DellaGiustina et al. 2020)
II. New Candidate Exogenous Material on Bennu

- We used images of Bennu obtained by the MapCam and PolyCam instruments (Rizk et al. 2018; Golish et al. 2020) on NASA’s OSIRIS-REx spacecraft (Lauretta et al. 2017) to search for more potentially exogeneous material on the surface of Bennu

- We identified 50 bright boulders on Bennu with red spectral slopes and significant x-band (0.85 µm) absorptions, including the six bright boulders previously described in DellaGiustina et al. (2020)
II. New Candidate Exogenous Material on Bennu

• These bright boulders are distributed across Bennu’s surface, concentrated in rockier terrains (larger than average particle size)
Exogeneous candidates found by spectral slope and x-band absorption, blue also in DG et al. 2020.
Morphology of new bright spots in PolyCam Images

1. **Single homogeneous boulder**
 - ID15: 20190321T193559S706
 - ID12: 20190321T200130S508

2. **Single heterogeneous boulder**
 - ID4: 20190321T202702S484
 - ID18: 20190321T192125S551

3. **Part of a larger boulder (Breccia?)**
 - ID15: 20190321T193559S706
 - ID4: 20190321T202702S484

4. **Xenolith/Breccia**
 - ID12: 20190321T200130S508
 - ID18: 20190321T192125S551
II. New Candidate Exogenous Material on Bennu

• There is some correlation between their morphology and spectra
• Bright boulders with reflectance peaking at 0.55 µm have lower normal albedo than the other candidates, suggesting a different composition and possibly a different origin
• An initial comparison with Ryugu (Tatsumi et al. 2020) indicates that Bennu is more abundant in possible exogeneous material
V. Conclusions

- Exogenous materials identified on asteroids Bennu and Ryugu (Della Giustina et al. 2020; Tatsumi et al. 2020)
- Further analysis of MapCam and PolyCam images has revealed a wider diversity of potentially exogenous lithologies on Bennu, expanding on the findings of DellaGiustina et al. (2020).
- We continue our study of this diverse material on Bennu’s surface to constrain the asteroid’s origin, evolution, and collisional history (e.g., Ballouz et al. 2020)