

The Radcliffe Wave

presented by Alyssa Goodman, Center for Astrophysics | Harvard & Smithsonian, **Radcliffe Institute for Advanced Study**

Nature paper by: João Alves^{1,3}, Catherine Zucker², Alyssa Goodman^{2,3}, Joshua Speagle², Stefan Meingast¹, Thomas Robitaille⁴, Douglas Finkbeiner³, Edward Schlafly⁵ & Gregory Green⁶

> representing (1) University of Vienna; (2) Harvard University; (3) Radcliffe Insitute; (4) Aperio Software; (5) Lawrence Berkeley National Laboratory; (6) Kavli Insitute for Particle Physics and Cosmology

CARTOON*

DAT

The Radcliffe Wave

*drawn by Dr. Robert Hurt, in collaboration with Milky Way experts based on data; as shown in screenshot from AAS WorldWide Telescope

Each red dot marks a star-forming blob of gas whose distance from us has been accurately measured.

> The Radcliffe Wave is 9000 light years long, and 400 light years wide, with crest and trough reaching 500 light years out of the Galactic Plane. Its gas mass is more than three million times the mass of the Sun.

The Radcliffe Wave

video created by the authors using AAS WorldWide Telescope (includes cartoon Milky Way by Robert Hurt)

The Radcliffe Wave

ACTUALLY 2 IMPORTANT DEVELOPMENTS

DISTANCES!! We can now measure distances to gas clouds in our own Milky Way galaxy to ~5% accuracy.

Zucker et al. <u>2019</u>; 2020

RADWAVE Surprising wavelike arrangement of star-forming gas is the "Local Arm" of the Milky Way.

Alves et al. 2020

"Why should I believe all this?"

DISTANCES!! We can now measure distances to gas clouds in our own Milky Way galaxy to ~5% accuracy.

requires special regions on the Sky (HII regions with masers)

Zucker et al. 2019

SCHEMATIC CARTOON(!)

Distances estimates **BEFORE** 3D dust mapping & Gaia (~30%)

SCHEMATIC CARTOON(!)

Distances estimates AFTER 3D dust mapping & Gaia (~5%)

HOW= 3D dust mapping*

+ Gaia*

+ glue*

*2 million CPU hours, Harvard *800 million stars, ESA *NASA/JWST, NSF *Microsoft Research, NSF, AAS

+ WorldWide Telescope

stars.

Can infer matter's distance from dust's effects on

WARNING: schematic diagram, NOT to scale (credit A. Goodman, 2

"Seeing" The Radcliffe Wave, in 3D

AAS WorldWide Telescope: worldwidetelescope.org

glue: glueviz.org

WHY DIDN'T WE FIND THE RADCLIFFE WAVE SOONER?

It's not apparent in 2D on the Sky.

Go	uld's Belt (Perrot & Grenier 2003)		
Gre	en 2019 3D Dust		
E Loo	cal Arm Fit (Reid+2016)		
🔵 Ma	jor Cloud Catalog		
Ma	ser Catalog (Reid+2014,2016)		
🔴 Sag	gittarius Arm Fit (Reid+2016)		
🔴 Ter	nuous Connections		
😑 Sui	1		
Subsets			
🕨 🛑 Sag	arius Arm Masers		
E Loc	Arm Masers		
🕨 🛑 Rad	dWave		
lot Layers -	WorldWideTelescope (WWT)		
🗸 📕 R	adWave (Major Cloud Catalog)		
🗌 📕 Le	ocal Arm Masers (Major Cloud Catalo	g)	
Si Si	agittarius Arm Masers (Major Cloud C	atalo	
V M	ajor Cloud Catalog		
Fixed	Size Color		
Fixed	Size Color		
Fixed	Size Color		
Fixed	Size Color 3 Center view on layer		
Fixed	Size Color 3 Center view on layer		
Fixed	Size Color 3 Center view on layer - WorldWideTelescope (WWT)		
Fixed Iot Options Mode	Size Color 3 Center view on layer - WorldWideTelescope (WWT) Sky	\$	
Fixed Not Options Mode Frame	Size Color 3 Center view on layer - WorldWideTelescope (WWT) Sky Galactic	•	
Fixed Not Options Mode Frame Longitud	Size Color 3 Center view on layer - WorldWideTelescope (WWT) Sky Galactic e 1	 • • • • • • • • • 	
Fixed Iot Options Mode Frame Longitud Latitud	Size Color 3 Center view on layer - WorldWideTelescope (WWT) Sky Galactic e I b		
Fixed Iot Options Mode Frame Longitud Latitud	Size Color 3 Center view on layer - WorldWideTelescope (WWT) Sky Galactic e I b Black Sky Background		
Fixed Iot Options Mode Frame Longitud Latitud Foreground	Size Color 3 Center view on layer - WorldWideTelescope (WWT) Sky Galactic e I b Black Sky Background		
Fixed Fixed Fixed Fixed Longitud Latitud Foreground Opacity	Size Color 3 Center view on layer - WorldWideTelescope (WWT) Sky Galactic e 1 b Black Sky Background r		

AAS WorldWide Telescope: worldwidetelescope.org

glue: glueviz.org

WHY DIDN'T WE FIND THE RADCLIFFE WAVE SOONER?

RADWAVE

Surprising wavelike arrangement of star-forming gas is the "Local Arm" of the Milky Way.

João Alves, Catherine Zucker, Alyssa Goodman, Joshua Speagle, Stefan Meingast, Thomas Robitaille, Douglas Finkbeiner, Edward F. Schlafly, and Gregory Green 2020, *Nature* (today)

Alves et al. Nature paper & two distance catalog papers by Zucker et al. (2019, 2020) include several interactive figures (via plot.ly & bokeh), and deep links to data (on Dataverse) and code (on GitHub) inspired by AAS "Paper of the Future" (Goodman et al. 2015)

RADWAVE

Surprising wavelike arrangement of star-forming gas is the "Local Arm" of the Milky Way.

"So What," for Astronomers?

demise of "Gould's Belt" accretion?)

- end to 100-year-old paradigm
- "Local Arm" not shaped as we thought it was, locally
 - arm is "straight" from top-down

big wave in "arm" never previously observed

wave's origin unknown (collision? dark matter?

Open Questions

- What is the ORIGIN of the Radcliffe Wave? Collision?
 - Do other parts of the Milky Way show this wavy structure? How about other galaxies? How can we SEARCH?
 - What do "waves " mean for the **STAR-FORMING HISTORIES of galaxies?**

SURF the Radcliffe Wave

The Radcliffe Wave

Publications & Talks

Visuals

History

Team Software Data

SURF THE RADCLIFFE WAVE

The Radcliffe Wave is a gigantic structure that defines the shape of the Sun's local neighborhood in the Milky Way Galaxy. Its existence was first presented officially in a paper published in Nature on January 7, 2020. This website offers scientists, educators, and the interested public much more information about the "RadWave," as we like to call it. Please use this page to find publications and talks, visuals (images, interactives, and videos), history, team info, software, and data. And, if we forgot something, just let us know—and we'll try to include it in future updates!

100	==
	1
5	

Publications & Talks

Visuals

History

Team

Software

Data

Find these slides, the papers, videos, WWT Tours, and much more at: tinyurl.com/RadWave iPoster Plus presentation today at 6:10 PM

It appears that the Sun, on its galactic orbit, crossed the Radcliffe Wave 13 million years ago, and may cross it again in the future.

video created by the authors using AAS WorldWide Telescope (includes cartoon Milky Way by Robert Hurt)

The Radcliffe Wave

RADCLIFFE INSTITUTE FOR ADVANCED STUDY HARVARD UNIVERSITY

Catherine DCLIFZUGKERT DR ADVANCED ARVARD UNIV

Our COLLABORATION: João Alves^{1,3}, Catherine Zucker², Alyssa Goodman^{2,3}, Joshua Speagle², Stefan Meingast¹, Thomas Robitaille⁴, Douglas Finkbeiner³, Edward Schlafly⁵ & Gregory Green⁶

RADCLIFFE INSTITUTE FOR ADVANCED STUDY HARVARD UNIVERSITY

João Alves

Alyssa Goodman

Hubble's "Tuning Fork"

F16. 1. The Sequence of Nebular Types.

The diagram is a schematic representation of the sequences of classification. A faw nebulæ of mixed types are found between the two sequences of spirals. The transition stage, S0, is more or less hypothetical. The transition between E7 and SB, is smooth and continuous. Between E7 and S_{sr} no nebulæ are definitely recognized.

The Spitzer Infrared Nearby Galaxies Survey (SINGS) Hubble Tuning-Fork

The Spitzer Space Telescope observed 75 galaxies as part of its SINGS

Intermediate Spirals

nbarred Spirals

?

UGC 12158 (Mark Reid's favorite Milky Way analog)

ا شرا

One set of the offer offer of the offer o

Milky Way Structure Jargon (Cartoon!)

thick disk

thin disk

halo

The Radcliffe Wave

click the figure to launch interactive...

João Alves, Catherine Zucker, Alyssa Goodman, Joshua Speagle, Stefan Meingast, Thomas Robitaille, Douglas Finkbeiner, Edward F. Schlafly, and Gregory Green 2020, Nature (today)