Sensitive Probing of Exoplanetary Oxygen in the Mid-Infrared

Nature Astronomy, January 2020

Thomas J. Fauchez^{1,2,3}, Geronimo L. Villanueva¹, Edward W. Schwieterman⁴, Martin Turbet⁵, Giada Arney¹, Daria Pidhorodetska^{1,6}, Ravi K. Kopparapu¹, Avi Mandell¹ and Shawn D. Domagal-Goldman¹

thomas.j.fauchez@nasa.gov | 240-264 0192

¹NASA Goddard Space Flight Center.
²Universities Space Research Association (USRA- GESTAR).
³GSFC Sellers Exoplanet Environments Collaboration (SEEC).
⁴University of California, Riverside
⁵Observatoire Astronomique de l'Université de Genève, Versoix, Switzerland.
⁶University of Maryland Baltimore County/CRESST II

Universities Space Research Association

Oxygen absorptions within JWST spectral range

Before this work:

- The O_2 A-band at 0.76 μ m in the visible
- The O₂-O₂ <u>Collision-Induced Absorptions</u> (CIAs) at 1.06 and 1.27 μm in the Near Infrared

Oxygen absorptions within JWST spectral range

Before this work:

- The O_2 A-band at 0.76 μ m in the visible
- The O₂-O₂ <u>Collision-Induced Absorptions</u> (CIAs) at 1.06 and 1.27 µm in the Near Infrared

Inelastic collision in a gas producing distinct spectral features

Oxygen absorptions within JWST spectral range

Before this work:

- The O_2 A-band at 0.76 μ m in the Visible
- The O_2 - O_2 <u>Collision-Induced Absorption</u> (CIA) at 1.06 and 1.27 μ m in the Near Infrared

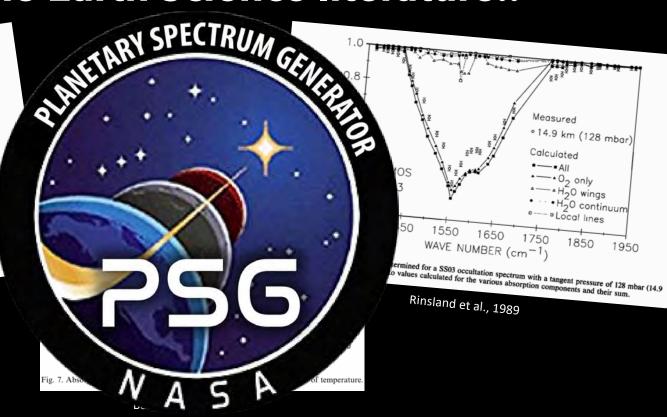
After this work:

• The O₂-X CIA at 6.4 µm in the Mid-Infrared (JWST MIRI range)

Why was it previously missing?

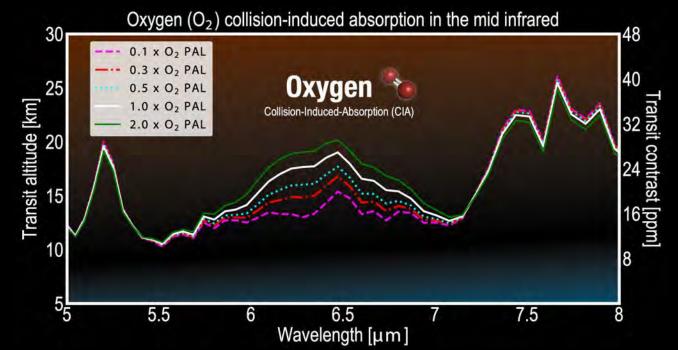
➢No CIA included in some RT models

Incomplete / obsolete spectral databases


➢Only O₂-O₂ feature at 6.4 µm is included in HITRAN, not O₂-X features

>Overlapping with H₂O absorption band

The Mid-Infrared O₂-X CIA in the Earth Science literature..



eng. 3. Comparison octavion measures reasonnant and alculated transmittances for the 94.6° sp solid line is for O_2 absorption only (same as Figure 2). lines connect transmittances calculated for absorption without O_2 (open circles) and including O_2 (open tria that all the plotted points represent transmittance val that all the protect points represent transmittance van lengths chosen to be relatively free of line absorption. Rinsland et al., 1982

1950

Simulated transmission spectra of TRAPPIST-1e with JWST MIRI

O₂-X CIA is very sensitive to the oxygen pressure and dominates the 6 to 7 μm region

Modern Earth-like atmosphere

Artist illustration of TRAPPIST-1e with a modern Earth -like atmosphere

TRAPPIST-1e as a benchmark..

<u>Within 5 pc from the Sun:</u>

 $\rm O_2\text{-}X$ CIA at 6.4 μm is the only $\rm O_2$ feature potentially detectable with JWST

Beyond 5 pc:

Not detectable with JWST

Desiccated O₂-dominated atmosphere

Image courtesy of NASA/GSFC/Friedlander-Griswold

Artist illustration of TRAPPIST-1e with a desiccated O_2 -dominated atmosphere

TRAPPIST-1e as a benchmark..

<u>Up to 25 pc from the Sun:</u>

- Both the $1.27\mu m O_2$ - O_2 and $6.4 \mu m O_2$ -X CIAs could detect dense O_2 desiccated atmospheres.
- The 6.4 μm O₂-X CIA requires less transits than the other O₂ features

Conclusions

The 6.4 μ m O₂-X CIA may be the most detectable O₂ feature for transit observations.

✓ Within 5 pc:

The only O₂ feature to detect modern Earth levels of oxygen detectable at 5 sigma.

✓ <u>Beyond 5 pc (up to ~ 25 pc)</u>:

Desiccated dense O_2 atmospheres in less transits than the other O_2 features