Eagle-eyed View from Flying Telescope Reveals How the Swan Nebula Hatched

Presented by: James De Buizer (SOFIA-USRA)

Presenter Contact: jdebuizer@sofia.usra.edu www.jim-debuizer.net

Talk 361.03

Paper: Lim, De Buizer, & Radomski (2020, ApJ, accepted)
Lead Author Contact: wanggi.lim.astro@gmail.com

This new image utilizing data from SOFIA reveals never-before-seen details of the Swan Nebula

Main results:

A hidden population of very young, massive stars was uncovered

The nebula was not all formed at the same time

"Massive" stars are 8x the mass of our Sun or larger

Only 1% of all stars are bigger than 8 M_{sun}

Massive stars are rare but their influence is large

They release so much energy that they can change the evolution of entire galaxies

Their rarity makes it hard to learn about them

They form in dense clouds, and cannot easily be seen and studied

Observations in the infrared are needed

The Stratospheric Observatory For Infrared Astronomy (SOFIA) was used for making these observations

The Swan Nebula (M17) is located more than 5,000 light years away in the constellation Sagittarius

The Swan Nebula contains a giant star-forming region where massive stars are being born

Dark optical areas are the dense cloud areas where stars are forming

The SOFIA 20 micron image provides great resolution without being over-exposed

Spitzer images comparable resolution, but images were over-exposed

Before the SOFIA images, the MSX images were the best resolution images

The 20 micron SOFIA image is the best resolution ever

No comparable image to the 37 micron SOFIA image exists

These images provide great resolution so that we could detect a previously unseen massive young stars

This composite image contains
SOFIA data, along with Herschel
data, and Spitzer near-optical data

Blue = SOFIA 20 micrometer

Green = SOFIA 37 micrometer

Red = Herschel 70 micrometer

White stars = Spitzer 3 micrometer

We determined that the nebula has undergone multiple eras of formation that are responsible for its present appearance

Main results:

A hidden population of very young, massive stars was uncovered

The nebula was not all formed at the same time

Presented by: James De Buizer (SOFIA-USRA)
Presenter Contact: jdebuizer@sofia.usra.edu
www.jim-debuizer.net

Paper: Lim, De Buizer, & Radomski (2020, ApJ, accepted) Lead Author Contact: wanggi.lim.astro@gmail.com M17 Swan Nebula from SOFIA-FORCAST

with additional data from Herschel, Spitzer