HOLiCOW XIII. A 2.4% measurement of H₀ from lensed quasars: 5.3 sigma tension between early and late-Universe probes Monthly Notices of the Royal Astronomical Society, in press January 8, 2020 ### **Geoff Chih-Fan Chen** University of California, Davis chfchen@ucdavis.edu | @GCFChen ## What we found! - We have used a completely independent method to measure the Hubble constant. - Our result agrees with the local measurements by the traditional distance ladder technique (Riess et al. 2019; Freedman et al. 2019). - The consequence is that the tension is very likely real between local expansion rate and the prediction from the standard cosmological model. #### Hubble constant: the current expansion rate of the Universe ## Ho tension Riess et al 2019 $$H = H(\rho_m, \rho_r, \rho_\Lambda, \rho_k)$$ Cosmic microwave background data + ΛCDM model Ш Planck team derives $H_0 = 67.4 \pm 0.5 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (Planck 2018)}$ #### Assumptions made in ACDM model - No spatial curvature - Constant dark energy (Λ) - Effective number of neutrino species inferred from the standard model ### Extraordinary claims require extraordinary evidence Need independent methods and data to overcome systematics, especially the unknown unknowns ## Independent methodology: Gravitational lensing [Credit: ESA/Hubble, NASA] ### Advantages: (1) simple geometry & well-tested physics (2) one-step physical measurement of a cosmological distance **Strong Lens Image** Δt : Time delays S. H. Suyu, C. D. Fassnacht, NRAO/AUI/NSF #### Advantages: - (1) simple geometry & well-tested physics - (2) one-step physical measurement of a cosmological distance **Strong Lens Image** Suyu et al. 2014 #### Advantages: - (1) simple geometry & well-tested physics - (2) one-step physical measurement of a cosmological distance **Strong Lens Image** #### Mass along the line of slight #### Advantages: (1) simple geometry & well-tested physics (2) one-step physical measurement of a cosmological distance **Strong Lens Image** Δt : Time delays $$D_{\Delta t} \propto rac{D_d D_s}{D_{ds}} \propto rac{1}{H_0}$$ Time-delay Hubble distance constant ## HOLiCOW collaboration: A 2.4% measurement of Ho #### Blind analysis to avoid confirmation bias #### 5.3 sigma tension between early and late-Universe probes #### 5.3 sigma tension between early and late-Universe probes # Terminology ``` \sim 0\sigma Too good to be true \sim 1\sigma Consistency > 2\sigma Curiosity > 3\sigma Tension/Discrepancy > 4\sigma Problem > 5\sigma Crisis? ``` # 5.3 sigma te sion between early and late-Universe probes ## Summary - Time-delay strong lensing achieves a 2.4% uncertainty in the H₀ measurement with 6 gravitationally lensed quasars. - Two independent and direct H₀ measurements yield the consistent results indicating a crisis in the modern cosmology - Only 0.00001% chance that the true value is located at the prediction from the LCDM model (caveat: no any systematics) - New cosmological model may very well be needed to resolve the tension # HOLiCOW XIII. A 2.4% measurement of H₀ from lensed quasars: 5.3 sigma tension between early and late-Universe probes Monthly Notices of the Royal Astronomical Society, in press January 8, 2020 https://hubblesite.org/contents/news-releases/2020/news-2020-04 Kenneth C. Wong,^{1,2} Sherry H. Suyu,^{3,4,5} **Geoff C.-F. Chen**,⁶ Cristian E. Rusu,^{2,7,6} Martin Millon,⁸ Dominique Sluse,⁹ Vivien Bonvin,⁸ Christopher D. Fassnacht,⁶ Stefan Taubenberger,³ Matthew W. Auger,¹⁰ Simon Birrer,¹¹ James H. H. Chan,⁸ Frederic Courbin,⁸ Stefan Hilbert,^{12,13} Olga Tihhonova,⁸ Tommaso Treu,¹¹ Adriano Agnello,¹⁴ Xuheng Ding,¹¹ Inh Jee,³ Eiichiro Komatsu,^{3,1} Anowar J. Shajib,¹¹ Alessandro Sonnenfeld,¹⁵ Roger D. Blandford,¹⁶ Leon V. E. Koopmans,¹⁷ Philip J. Marshall¹⁶ and Georges Meylan⁸ - 1. Kavli IPMU (WPI), Japan - 2. NAOJ, Japan - 3. MPA, Germany - 4. TUM, Germany - 5. ASIAA, Taiwan - 6. UCD, USA - 7. Subaru Telescope, USA - 8. EPFL, Switzerland - 9. STAR Institute, Uliege, Belgium - 10. Cambridge, UK - 11. UCLA, USA - 12. Exzellenzcluster Universe, Germany - 13. LMU, Germany - 14. DARK, Niels-Bohr Institute, Denmark - 15. Leiden Observatory, Leiden University, the Netherlands - 16. KIPAC, Stanford University, USA - 17. Kapteyn Astronomical Institute, University of Groningen, the Netherlands