HOLiCOW XIII. A 2.4% measurement of H₀ from lensed quasars: 5.3 sigma tension between early and late-Universe probes

Monthly Notices of the Royal Astronomical Society, in press January 8, 2020

Geoff Chih-Fan Chen

University of California, Davis

chfchen@ucdavis.edu | @GCFChen

What we found!

- We have used a completely independent method to measure the Hubble constant.
- Our result agrees with the local measurements by the traditional distance ladder technique (Riess et al. 2019; Freedman et al. 2019).
- The consequence is that the tension is very likely real between local expansion rate and the prediction from the standard cosmological model.

Hubble constant: the current expansion rate of the Universe

Ho tension

Riess et al 2019

$$H = H(\rho_m, \rho_r, \rho_\Lambda, \rho_k)$$

Cosmic microwave background data

+

ΛCDM model

Ш

Planck team derives $H_0 = 67.4 \pm 0.5 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ (Planck 2018)}$

Assumptions made in ACDM model

- No spatial curvature
- Constant dark energy (Λ)
- Effective number of neutrino species inferred from the standard model

Extraordinary claims require extraordinary evidence

Need independent methods and data to overcome systematics, especially the unknown unknowns

Independent methodology: Gravitational lensing

[Credit: ESA/Hubble, NASA]

Advantages:

(1) simple geometry & well-tested physics

(2) one-step physical measurement of a cosmological distance

Strong Lens Image

 Δt : Time delays

S. H. Suyu, C. D. Fassnacht, NRAO/AUI/NSF

Advantages:

- (1) simple geometry & well-tested physics
- (2) one-step physical measurement of a cosmological distance

Strong Lens Image

Suyu et al. 2014

Advantages:

- (1) simple geometry & well-tested physics
- (2) one-step physical measurement of a cosmological distance

Strong Lens Image

Mass along the line of slight

Advantages:

(1) simple geometry & well-tested physics

(2) one-step physical measurement of a cosmological distance

Strong Lens Image

 Δt : Time delays

$$D_{\Delta t} \propto rac{D_d D_s}{D_{ds}} \propto rac{1}{H_0}$$
 Time-delay Hubble distance constant

HOLiCOW collaboration: A 2.4% measurement of Ho

Blind analysis to avoid confirmation bias

5.3 sigma tension between early and late-Universe probes

5.3 sigma tension between early and late-Universe probes

Terminology

```
\sim 0\sigma Too good to be true \sim 1\sigma Consistency > 2\sigma Curiosity > 3\sigma Tension/Discrepancy > 4\sigma Problem > 5\sigma Crisis?
```

5.3 sigma te sion between early and late-Universe probes

Summary

- Time-delay strong lensing achieves a 2.4% uncertainty in the H₀ measurement with 6 gravitationally lensed quasars.
- Two independent and direct H₀ measurements yield the consistent results indicating a crisis in the modern cosmology
- Only 0.00001% chance that the true value is located at the prediction from the LCDM model (caveat: no any systematics)
- New cosmological model may very well be needed to resolve the tension

HOLiCOW XIII. A 2.4% measurement of H₀ from lensed quasars: 5.3 sigma tension between early and late-Universe probes

Monthly Notices of the Royal Astronomical Society, in press January 8, 2020

https://hubblesite.org/contents/news-releases/2020/news-2020-04

Kenneth C. Wong,^{1,2} Sherry H. Suyu,^{3,4,5} **Geoff C.-F. Chen**,⁶ Cristian E. Rusu,^{2,7,6} Martin Millon,⁸ Dominique Sluse,⁹ Vivien Bonvin,⁸ Christopher D. Fassnacht,⁶ Stefan Taubenberger,³ Matthew W. Auger,¹⁰ Simon Birrer,¹¹ James H. H. Chan,⁸ Frederic Courbin,⁸ Stefan Hilbert,^{12,13} Olga Tihhonova,⁸ Tommaso Treu,¹¹ Adriano Agnello,¹⁴ Xuheng Ding,¹¹ Inh Jee,³ Eiichiro Komatsu,^{3,1} Anowar J. Shajib,¹¹ Alessandro Sonnenfeld,¹⁵ Roger D. Blandford,¹⁶ Leon V. E. Koopmans,¹⁷ Philip J. Marshall¹⁶ and Georges Meylan⁸

- 1. Kavli IPMU (WPI), Japan
- 2. NAOJ, Japan
- 3. MPA, Germany
- 4. TUM, Germany
- 5. ASIAA, Taiwan
- 6. UCD, USA

- 7. Subaru Telescope, USA
- 8. EPFL, Switzerland
- 9. STAR Institute, Uliege, Belgium
- 10. Cambridge, UK
- 11. UCLA, USA
- 12. Exzellenzcluster Universe, Germany

- 13. LMU, Germany
- 14. DARK, Niels-Bohr Institute, Denmark
- 15. Leiden Observatory, Leiden University, the Netherlands
- 16. KIPAC, Stanford University, USA
- 17. Kapteyn Astronomical Institute, University of Groningen, the Netherlands

