35th Meeting of the AAS Division on Dynamical Astronomy, April 2004
Session 7 Posters II
, Thursday, April 22, 2004, 7:00-8:30pm,

[Previous] | [Session 7] | [Next]

[7.07] Orbital Evolution of Jupiter-family Comets

S.I. Ipatov (George Mason Univ., USA; Inst. Applied Math., Moscow), J.C. Mather (LASP, NASA/GSFC)

The orbital evolution of more than 25,000 Jupiter-family comets (JFCs) under the gravitational influence of planets was studied. After 40 Myr one considered object (with initial orbit close to that of Comet 88P) got aphelion distance Q<3.5 AU, and it moved in orbits with semi-major axis a=2.60-2.61 AU, perihelion distance 1.71.4 AU, Q<2.6 AU, e=0.2-0.3, and i=9-33 deg for 8 Myr (and it had Q<3 AU for 100 Myr). So JFCs can rarely get typical asteroid orbits and move in them for Myrs. In our opinion, it can be possible that Comet 133P (Elst--Pizarro) moving in a typical asteroidal orbit was earlier a JFC and it circulated its orbit also due to non-gravitational forces. JFCs got near-Earth object (NEO) orbits more often than typical asteroidal orbits. A few JFCs got Earth-crossing orbits with a<2 AU and Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three considered former JFCs even got inner-Earth orbits (with Q<0.983 AU) or Aten orbits for Myrs. The probability of a collision of one of such objects, which move for millions of years inside Jupiter's orbit, with a terrestrial planet can be greater than analogous total probability for thousands other objects. Results obtained by the Bulirsch-Stoer method and by a symplectic method were mainly similar (except for probabilities of close encounters with the Sun when they were high). Our results show that the trans-Neptunian belt can provide a significant portion of NEOs, or the number of trans-Neptunian objects migrating inside solar system could be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got NEO orbits disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. Several our papers on this problem were put in http://arXiv.org/format/astro-ph/ (e.g., 0305519, 0308448). This work was supported by NASA (NAG5-10776) and INTAS (00-240).

[Previous] | [Session 7] | [Next]

Bulletin of the American Astronomical Society, 36 #2
© 2004. The American Astronomical Soceity.