AAS 201st Meeting, January, 2003
Session 49. Eta Carinae, LBVs, and Circumstellar Disks
Poster, Tuesday, January 7, 2003, 9:20am-6:30pm, Exhibit Hall AB

[Previous] | [Session 49] | [Next]

[49.03] Global Properties of the Ejecta Absorptions in the Spectrum of Eta Carinae

T.R. Gull (NASA's GSFC), G.L. Vieira (SSAI, NASA's GSFC), A.C. Danks (L3-Analytics, NASA's GSFC)

Between 2400A to 3160A, we have identified approximately 500 absorption line complexes, each with up to 20 velocity components. Lines of Fe I, Fe II, Ti II, V II, Ni II, Co II, Mn II, Mg I, Mg II and Na I have been identified. Surprisingly, most of the lines originate from energy levels significantly above the ground level. This is indicative of optical pumping from the Central Source. Line widths and population of various levels are non-thermal. The relative column densities change with velocity. For example, Fe II column densities for one transition arising from ~0.1eV increase with ejecta velocity while Fe II column densities for another transition decreases with velocity. This may be due to softening of the ultraviolet radiation that pumps the various ions (neutrals) with velocity. If we assume that the distance of each system scales with distance from the Central Source, only a thirty percent change in distance is noted; yet the ratio of column densities for the Fe II examples given above changes by nearly thirty-fold.

If the ejecta distance scales with distance from Eta Carinae, then it is likely that this ejecta originated at nearly the same time. The geometry of the Homunculus has been determined to be a double-lobed structure tilted out of the plane of the sky. We interpret the ejecta as being in the wall of the Southwest lobe, and that this wall just happens to be in line of sight from Eta Carinae to the observer.

As Eta Carinae enters into the upcoming minimum, we are already seeing some evidence for changes in column densities due to changes in ultraviolet fluxes. This is reinforced by IUE observations that we have recently re-analyzed with respect to the 5.52 year (2020+/-10 days) spectroscopic period.

Observations were done through STScI and funding was through the STIS GTO resources.

The author(s) of this abstract have provided an email address for comments about the abstract: gull@sea.gsfc.nasa.gov

[Previous] | [Session 49] | [Next]

Bulletin of the American Astronomical Society, 34, #4
© 2002. The American Astronomical Soceity.