DPS 34th Meeting, October 2002
Session 18. Outer Planet Atmospheres
Poster, Chair(s): , Tuesday, October 8, 2002, 3:30-6:00pm, Exhibit Hall

[Previous] | [Session 18] | [Next]

[18.05] Addition of a Hydrological Cycle to the EPIC Jupiter Model

T.E. Dowling, C.J. Palotai (CPL/U. Louisville)

We present a progress report on the development of the EPIC atmospheric model to include clouds, moist convection, and precipitation. Two major goals are: i) to study the influence that convective water clouds have on Jupiter's jets and vortices, such as those to the northwest of the Great Red Spot, and ii) to predict ammonia-cloud evolution for direct comparison to visual images (instead of relying on surrogates for clouds like potential vorticity). Data structures in the model are now set up to handle the vapor, liquid, and solid phases of the most common chemical species in planetary atmospheres. We have adapted the Prather conservation of second-order moments advection scheme to the model, which yields high accuracy for dealing with cloud edges. In collaboration with computer scientists H. Dietz and T. Mattox at the U. Kentucky, we have built a dedicated 40-node parallel computer that achieves 34 Gflops (double precision) at 74 cents per Mflop, and have updated the EPIC-model code to use cache-aware memory layouts and other modern optimizations. The latest test-case results of cloud evolution in the model will be presented. This research is funded by NASA's Planetary Atmospheres and EPSCoR programs.

If the author provided an email address or URL for general inquiries, it is as follows:


[Previous] | [Session 18] | [Next]

Bulletin of the American Astronomical Society, 34, #3< br> © 2002. The American Astronomical Soceity.