AAS 200th meeting, Albuquerque, NM, June 2002
Session 37. CMEs and Prominences
Display, Tuesday, June 4, 2002, 10:00am-6:30pm, SW Exhibit Hall

[Previous] | [Session 37] | [Next]

[37.10] Interaction of dust grains with CMEs in the F corona

B. R. Ragot (Astronomy Department, University of Texas, Austin), S. W. Kahler (Air Force Research Laboratory, Space Vehicles Division)

The density of interplanetary dust increases Sunward to reach its maximum in the solar F corona. Although current models predict a broad range of plausible values for the total density of grains at a given distance from the Sun, the number of grains interacting with a CME around 4 solar radii is large enough to raise questions about the influence of the dust grains on the dynamics of CMEs. To answer these questions we estimate the various forces exerted on the dust grains in a CME. The enhanced magnetic field within CMEs results in the Lorentz force being the dominant force for practically all submicron particles, trapping the ones smaller than 0.1 micron and deflecting the others. For larger grains the solar gravitational force dominates, but the Lorentz force still exceeds the radiation pressure force up to almost 10 microns. In the absence of sputtering the ion drag force would become larger than the Lorentz force at about 20 microns, depending on the CME parameters. At 4 solar radii, however, a dominant contribution from the sputtered particles is expected in the ion drag force, due to the high temperature of the grains. The ion drag force from CMEs may therefore even exceed the radiation pressure force. It is in any case much larger than the Pointing-Robertson force. In conclusion it is clear that for all grain sizes, the presence of CMEs has critical effects on the dynamics of the dust grains in the F corona. It appears, however, that the dust grains have no influence on the dynamics of CMEs. The total energy lost by a CME through its interaction with the dust grains is, in the most optimistic estimate, less than one percent of the CME kinetic energy.

[Previous] | [Session 37] | [Next]

Bulletin of the American Astronomical Society, 34
© 2002. The American Astronomical Soceity.