DPS 2001 meeting, November 2001
Session 56. Laboratory Studies Posters
Displayed, 9:00am Tuesday - 3:00pm Saturday, Highlighted, Saturday, December 1, 2001, 2:00-2:30pm, French Market Exhibit Hall

[Previous] | [Session 56] | [Next]

[56.10] A Dust Particle Accelerator for Laboratory Simulations of Cosmic Dust Impacts

H. L. K. Manning (Concordia College, Moorhead Minnesota)

Dusty environments in the solar system such as around comets and interstellar dust are the focus of many current investigations. Instruments performing in-situ measurements of dust particles require laboratory testing and calibrating prior to their launch. This laboratory testing is most often done with a high-speed dust particle accelerator. In addition, studies of physical processing of planetary surfaces and spacecraft materials due to micro-dust particle impacts can also be performed with a dust particle accelerator.

In 1975, Concordia College in Moorhead, Minnesota acquired a 2MeV dust particle accelerator from NASA/GSFC which is still fully functioning and currently being updated. Improvements to the electronic detection system have also been undertaken. We have designed a means to detect and record the charge and velocity of the dust particles with a computer system. Prior to these modifications, we had no means of correlating the particle's properties with the time the particles were detected. Other improvements to the vacuum system are slated. Besides improvements to the facilities, we have improved the performance characteristics of the accelerator. Our traditional dust material is 1-5 micron carbonyl iron. With this dust source, particles acquire velocities up to 14 km/sec. We have successfully used 70nm copper dust resulting in particles with speeds of 22km/sec and possibly higher.

If you would like more information about this abstract, please follow the link to http://www.cord.edu/faculty/manning/index.html. This link was provided by the author. When you follow it, you will leave the Web site for this meeting; to return, you should use the Back comand on your browser.

The author(s) of this abstract have provided an email address for comments about the abstract: manning@cord.edu

[Previous] | [Session 56] | [Next]