AAS 197, January 2001
Session 81. Supernovae and Nova Theory
Display, Wednesday, January 10, 2001, 9:30am-7:00pm, Exhibit Hall

[Previous] | [Session 81] | [Next]

[81.03] The Structure of Carbon Detonation in Type Ia Supernovae

B. Fryxell, F.X. Timmes, M. Zingale, L.J. Dursi, P. Ricker, K. Olson, A.C. Calder, H. Tufo, J.W. Truran, R. Rosner (Univ. of Chicago), P. MacNeice (NASA/GSFC)

Type Ia Supernova explosions are thought to begin as deflagrations in the center of accreting white dwarfs. Observations suggest that at some point, the burning undergoes a transition from a deflagration to a detonation front. We describe high-resolution three-dimensional simulations of the structure of such a detonation. The pre-detonation material is assumed to be pure C12 at a density of 107 g cm-3. A cellular structure develops behind the front, leaving pockets of unburned fuel. The cellular instability is unlikely to have any observational consequences at this density, since the cell size is only a few centimeters. However, as the detonation approaches the surface, the cell size will become comparable to the radius of the star, leaving a nonspherical distribution of reaction products and modifying the spectral signature of the explosion. The calculations were performed on 1000 processors of ASCI Blue Pacific at Lawrence Livermore National Laboratory using the Flash Code developed at the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. They represent by far the largest simulations ever carried out on the detailed structure of burning fronts in Type Ia supernovae.

This work was supported in part by the Department of Energy Grant No. B341495 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago under the ASCI Strategic Alliances Program and by NASA/Goddard Space Flight Center.

If you would like more information about this abstract, please follow the link to http://flash.uchicago.edu. This link was provided by the author. When you follow it, you will leave the Web site for this meeting; to return, you should use the Back comand on your browser.

[Previous] | [Session 81] | [Next]