AAS Meeting #193 - Austin, Texas, January 1999
Session 21. The Distance Scale and Dark Matter
Oral, Wednesday, January 6, 1999, 10:00-11:30am, Room 8 (A,B,C)

[Previous] | [Session 21] | [Next]

[21.04D] Distances to M101, NGC 2403, and NGC 2366 via Long Period Variables

J. S. Jurcevic (Astronomy Department, University of Texas at Austin)

A new method of measuring accurately extra-Galactic distances has been developed based on the relationship between the luminosity of red supergiant variable (RSV) stars at optical wavelengths and their period of luminosity variation. This period-luminosity (PL) relationship has been calibrated in the broadband optical R and I-bands with RSVs from the Galactic Perseus OB1 association, the Large Magellanic Cloud, and M33. To verify the effectiveness of these RSV PL relations, the distances to the galaxies M101, NGC 2403, and NGC 2366 were determined. These galaxies were chosen because they had existing Cepheid based distances to use as a comparison between the two methods. These galaxies also span a range of metallicity to investigate any metallicity effects.

Ground-based photometry of the galaxies in the R-band was obtained over four years to discover red variable stars with periods in the range 100--1200 days. The number of RSVs discovered in M101, NGC 2403, and NGC 2366 was 42, 61, and 20, respectively. By assuming a distance modulus for the Large Magellanic Cloud of 18.5 ±0.1 mag, single epoch I-band photometry of the RSVs was used to construct random phase PL relations resulting in distance moduli for M101, NGC 2403, and NGC 2366 of 29.40 ±0.16, 27.67 ± 0.16, and 27.86 ±0.20 mag, respectively. These distances have been corrected for extinction by assuming values of E(B - V) = 0.10, 0.04, and 0.04 mag, respectively. These distances agree quite well with those found via recent Cepheid based measurements. In particular, the RSV distance modulus to M101 is very close to the HST Key Project Cepheid modulus of 29.34 ±0.17 mag (Kelson {et al. } 1996). These results show that RSVs, at optical wavelengths, provide a new method for measuring distances with a precision comparable to that of Cepheids with the advantages of being more luminous and more abundant than Cepheids.

The author(s) of this abstract have provided an email address for comments about the abstract: jsj@astro.as.utexas.edu

[Previous] | [Session 21] | [Next]