Previous abstract Next abstract

Session 18 - Flares I.
Oral session, Tuesday, July 01
Ballroom A, Chair: Mona Hagyard

[18.03] Relative Timing of Microwave and HXR Bursts

T. S. Bastian (NRAO), M. J. Aschwanden (UMd)

The close correlation between microwave and hard X-ray (HXR) emission during flares has often been cited as evidence that the same population of energetic electrons is responsible for both types of emission. The two emissions differ in detail, however. Imaging observations have demonstrated that the two are not necessarily cospatial and timing observations have demonstrated that the microwaves are often significantly delayed with respect to HXR emission, typically by several seconds, but occassionally by much longer times. Such delays are in seeming conflict with the thick target model for HXR emission in its simplest form, and with the idea that microwave and HXR emissions result from essentially the same population of electrons.

One way to reconcile the delay between microwaves and HXRs in the thick target model is to suppose that that electron trapping is significant (e.g., Cornell et al., ApJ, 279, 875). For a magnetic trap containing a plasma of constant density, high energy electrons have a longer lifetime against collisions than low energy electrons (\tau_def\propto E^3/2). Hence the energetic electrons responsible for the microwaves remain in the trap longer and the microwave emission they emit peaks later than the HXR emission. Another possibility is that higher energy electrons are accelerated later than lower energy electrons (so-called ``second-step'' acceleration models; e.g., Bai and Dennis 1985, ApJ, 292, 699).

To explore the question in detail we have assembled a sample of 16 flares observed simultaneously in microwaves by the Nobeyama radioheliograph and in HXRs by the BATSE instrument on board the CGRO in burst trigger mode. The former imaged the flares at 17 GHz with an angular resolution of \approx 10'' and a time resolution of either 50 msec or 1 sec. The latter obtained medium energy resolution spectra (16 channels) between 20-200 keV with a time resolution of 16 or 64 msec. We present preliminary results of our analysis.


The author(s) of this abstract have provided an email address for comments about the abstract: tbastian@nrao.edu

Program listing for Tuesday